目录

暂无相关搜索结果!

第1章 概述

2018-11-11 22:09:01

1.1 引言

很多不同的厂家生产各种型号的计算机,它们运行完全不同的操作系统,但TCP/IP协议族允许它们互相进行通信。这一点很让人感到吃惊,因为它的作用已远远超出了起初的设想。TCP/IP起源于60年代末美国政府资助的一个分组交换网络研究项目,到90年代已发展成为计算机之间最常应用的组网形式。它是一个真正的开放系统,因为协议族的定义及其多种实现可以不用花钱或花很少的钱就可以公开地得到。它成为被称作“全球互联网”或“因特网(Internet)”的基础,该广域网(WAN)已包含超过100万台遍布世界各地的计算机。

本章主要对TCP/IP协议族进行概述,其目的是为本书其余章节提供充分的背景知识。如果读者要从历史的角度了解有关TCP/IP的早期发展情况,请参考文献[Lynch 1993]。

1.2 分层

网络协议通常分不同层次进行开发,每一层分别负责不同的通信功能。一个协议族,比如TCP/IP,是一组不同层次上的多个协议的组合。TCP/IP通常被认为是一个四层协议系统,如图1-1所示。

图1-1 TCP/IP协议族的四个层次

每一层负责不同的功能:

  1. 链路层,有时也称作数据链路层或网络接口层,通常包括操作系统中的设备驱动程序和计算机中对应的网络接口卡。它们一起处理与电缆(或其他任何传输媒介)的物理接口细节。
  2. 网络层,有时也称作互联网层,处理分组在网络中的活动,例如分组的选路。在TCP/IP协议族中,网络层协议包括IP协议(网际协议),ICMP协议(Internet互联网控制报文协议),以及IGMP协议(Internet组管理协议)。
  3. 运输层主要为两台主机上的应用程序提供端到端的通信。在TCP/IP协议族中,有两个互不相同的传输协议:TCP(传输控制协议)和UDP(用户数据报协议)。

    TCP为两台主机提供高可靠性的数据通信。它所做的工作包括把应用程序交给它的数据分成合适的小块交给下面的网络层,确认接收到的分组,设置发送最后确认分组的超时时钟等。由于运输层提供了高可靠性的端到端的通信,因此应用层可以忽略所有这些细节。

    而另一方面,UDP则为应用层提供一种非常简单的服务。它只是把称作数据报的分组从一台主机发送到另一台主机,但并不保证该数据报能到达另一端。任何必需的可靠性必须由应用层来提供。

    这两种运输层协议分别在不同的应用程序中有不同的用途,这一点将在后面看到。
  4. 应用层负责处理特定的应用程序细节。几乎各种不同的TCP/IP实现都会提供下面这些通用的应用程序:
    • Telnet远程登录。
    • FTP文件传输协议。
    • SMTP简单邮件传送协议。
    • SNMP简单网络管理协议。

2TCP/IP详解,卷1:协议

图1-2 局域网上运行FTP的两台主机

这里,我们列举了一个FTP客户程序和另一个FTP服务器程序。大多数的网络应用程序都被设计成客户—服务器模式。服务器为客户提供某种服务,在本例中就是访问服务器所在主机上的文件。在远程登录应用程序Te lnet中,为客户提供的服务是登录到服务器主机上。

在同一层上,双方都有对应的一个或多个协议进行通信。例如,某个协议允许TCP层进行通信,而另一个协议则允许两个IP层进行通信。

在图1-2的右边,我们注意到应用程序通常是一个用户进程,而下三层则一般在(操作系统)内核中执行。尽管这不是必需的,但通常都是这样处理的,例如UNIX操作系统。

在图1-2中,顶层与下三层之间还有另一个关键的不同之处。应用层关心的是应用程序的细节,而不是数据在网络中的传输活动。下三层对应用程序一无所知,但它们要处理所有的通信细节。

在图1-2中列举了四种不同层次上的协议。FTP是一种应用层协议,TCP是一种运输层协议,IP是一种网络层协议,而以太网协议则应用于链路层上。TCP/IP协议族是一组不同的协议组合在一起构成的协议族。尽管通常称该协议族为TCP/IP,但TCP和IP只是其中的两种协议而已(该协议族的另一个名字是Internet协议族(Internet Protocol Suite))。

网络接口层和应用层的目的是很显然的——前者处理有关通信媒介的细节(以太网、令牌环网等),而后者处理某个特定的用户应用程序(FTP、Telnet等)。但是,从表面上看,网络层和运输层之间的区别不那么明显。为什么要把它们划分成两个不同的层次呢?为了理解这一点,我们必须把视野从单个网络扩展到一组网络。

第1章 概 述3

图1-3 通过路由器连接的两个网络

在TCP/IP协议族中,网络层IP提供的是一种不可靠的服务。也就是说,它只是尽可能快地把分组从源结点送到目的结点,但是并不提供任何可靠性保证。而另一方面,TCP在不可靠的IP层上提供了一个可靠的运输层。为了提供这种可靠的服务,TCP采用了超时重传、发送和接收端到端的确认分组等机制。由此可见,运输层和网络层分别负责不同的功能。

从定义上看,一个路由器具有两个或多个网络接口层(因为它连接了两个或多个网络)。任何具有多个接口的系统,英文都称作是多接口的(multihomed)。一个主机也可以有多个接口,但一般不称作路由器,除非它的功能只是单纯地把分组从一个接口传送到另一个接口。同样,路由器并不一定指那种在互联网中用来转发分组的特殊硬件盒。大多数的TCP/IP实现也允许一个多接口主机来担当路由器的功能,但是主机为此必须进行特殊的配置。在这种情况下,我们既可以称该系统为主机(当它运行某一应用程序时,如FTP或Telnet),也可以称之为路由器(当它把分组从一个网络转发到另一个网络时)。在不同的场合下使用不同的术语。

4TCP/IP详解,卷1:协议

图1-4 TCP/IP协议族中不同层次的协议

第1章 概 述5

图1-5 五类互联网地址

6TCP/IP详解,卷1:协议

图1-6 各类IP地址的范围

由于互联网上的每个接口必须有一个唯一的IP地址,因此必须要有一个管理机构为接入互联网的网络分配IP地址。这个管理机构就是互联网络信息中心(Internet Network Information Centre),称作InterNIC。InterNIC只分配网络号。主机号的分配由系统管理员来负责。

Internet注册服务(IP地址和DNS域名)过去由NIC来负责,其网络地址是nic.ddn.mil。1993年4月1日,InterNIC成立。现在,NIC只负责处理国防数据网的注册请求,所有其他的Internet用户注册请求均由InterNIC负责处理,其网址是:rs.internic.net

事实上InterNIC由三部分组成:注册服务(rs.internic.net),目录和数据库服务(ds.internic.net),以及信息服务(is.internic.net)。有关InterNIC的其他信息参见习题1.8。

有三类IP地址:单播地址(目的为单个主机)、广播地址(目的端为给定网络上的所有主机)以及多播地址(目的端为同一组内的所有主机)。第12章和第13章将分别讨论广播和多播的更多细节。

在3.4节中,我们在介绍IP选路以后将进一步介绍子网的概念。图3-9给出了几个特殊的IP地址:主机号和网络号为全0或全1。

1.5 域名系统

尽管通过IP地址可以识别主机上的网络接口,进而访问主机,但是人们最喜欢使用的还是主机名。在TCP/IP领域中,域名系统(DNS)是一个分布的数据库,由它来提供IP地址和主机名之间的映射信息。我们在第14章将详细讨论DNS。

现在,我们必须理解,任何应用程序都可以调用一个标准的库函数来查看给定名字的主机的IP地址。类似地,系统还提供一个逆函数—给定主机的IP地址,查看它所对应的主机名。

大多数使用主机名作为参数的应用程序也可以把IP地址作为参数。例如,在第4章中当我们用Telnet进行远程登录时,既可以指定一个主机名,也可以指定一个IP地址。

1.6 封装

当应用程序用TCP传送数据时,数据被送入协议栈中,然后逐个通过每一层直到被当作一串比特流送入网络。其中每一层对收到的数据都要增加一些首部信息(有时还要增加尾部信息),该过程如图1-7所示。TCP传给IP的数据单元称作TCP报文段或简称为TCP段(TCP segment)。IP传给网络接口层的数据单元称作IP数据报(IP datagram)。通过以太网传输的比特流称作帧(Frame)。

第1章 概 述7

图1-7 数据进入协议栈时的封装过程

UDP数据与TCP数据基本一致。唯一的不同是UDP传给IP的信息单元称作UDP数据报(UDP datagram),而且UDP的首部长为8字节。

回想1.3节中的图1-4,由于TCP、UDP、ICMP和IGMP都要向IP传送数据,因此IP必须在生成的IP首部中加入某种标识,以表明数据属于哪一层。为此,IP在首部中存入一个长度为8bit的数值,称作协议域。1表示为ICMP协议,2表示为IGMP协议,6表示为TCP协议,17表示为UDP协议。

类似地,许多应用程序都可以使用TCP或UDP来传送数据。运输层协议在生成报文首部时要存入一个应用程序的标识符。TCP和UDP都用一个16bit的端口号来表示不同的应用程序。TCP和UDP把源端口号和目的端口号分别存入报文首部中。

网络接口分别要发送和接收IP、ARP和RARP数据,因此也必须在以太网的帧首部中加入某种形式的标识,以指明生成数据的网络层协议。为此,以太网的帧首部也有一个16 bit的帧类型域。

8TCP/IP详解,卷1:协议

图1-8以太网数据帧的分用过程

为协议ICMP和IGMP定位一直是一件很棘手的事情。在图1-4中,把它们与IP放在同一层上,那是因为事实上它们是IP的附属协议。但是在这里,我们又把它们放在IP层的上面,这是因为ICMP和IGMP报文都被封装在IP数据报中。

对于ARP和RARP,我们也遇到类似的难题。在这里把它们放在以太网设备驱动程序的上方,这是因为它们和IP数据报一样,都有各自的以太网数据帧类型。但在图2-4中,我们又把ARP作为以太网设备驱动程序的一部分,放在IP层的下面,其原因在逻辑上是合理的。

这些分层协议盒并不都是完美的。

当进一步描述TCP的细节时,我们将看到协议确实是通过目的端口号、源IP地址和源端口号进行解包的。

1.8 客户-服务器模型

大部分网络应用程序在编写时都假设一端是客户,另一端是服务器,其目的是为了让服务器为客户提供一些特定的服务。

可以将这种服务分为两种类型:重复型或并发型。重复型服务器通过以下步骤进行交互:

第1章 概 述9


Unix系统有保留端口号的概念。只有具有超级用户特权的进程才允许给它自己分配一个保留端口号。

这些端口号介于1~1023之间,一些应用程序(如有名的Rlogin,26.2节)将它作为客户与服务器之间身份认证的一部分。

1.10 标准化过程

究竟是谁控制着TCP/IP协议族,又是谁在定义新的标准以及其他类似的事情?事实上,有四个小组在负责Internet技术。

  1. Internet协会(ISOC,Internet Society)是一个推动、支持和促进Internet不断增长和发展的专业组织,它把Internet作为全球研究通信的基础设施。
  2. Internet体系结构委员会(IAB,Internet Architecture Board)是一个技术监督和协调的机构。它由国际上来自不同专业的15个志愿者组成,其职能是负责Internet标准的最后编辑和技术审核。IAB隶属于ISOC。
  3. Internet工程专门小组(IETF,Internet Engineering Task Force)是一个面向近期标准的组织,它分为9个领域(应用、寻径和寻址、安全等等)。IETF开发成为Internet标准的规范。为帮助IETF主席,又成立了Internet工程指导小组(IESG, Internet Engineering Steering Group)。
  4. Internet研究专门小组(IRIF,Internet Research Task Force)主要对长远的项目进行研究。

IRTF和IETF都隶属于IAB。文献[Crocker 1993]提供了关于Internet内部标准化进程更为详细的信息,同时还介绍了它的早期历史。

1.11 RFC

所有关于Internet的正式标准都以RFC(Request for Comment)文档出版。另外,大量的RFC并不是正式的标准,出版的目的只是为了提供信息。RFC的篇幅从1页到200页不等。每一项都用一个数字来标识,如RFC 1122,数字越大说明RFC的内容越新。

所有的RFC都可以通过电子邮件或用FTP从Internet上免费获取。如果发送下面这份电子邮件,就会收到一份获取RFC的方法清单:

第1章 概 述11

图1-9大多数实现都提供的标准的简单服务

12TCP/IP详解,卷1:协议

图1-10 不同的BSD版及其重要的TCP/IP特性

在本书中,我们将使用“伯克利派生系统”来指SunOS 4.x、SVR4以及AIX 3.2等那些基于伯克利源代码开发的系统。这些系统有很多共同之处,经常包含相同的错误。

起初关于Internet的很多研究现在仍然在伯克利系统中应用——新的拥塞控制算法(21.7节)、多播(12.4节)、“长肥管道”修改(24.3节)以及其他类似的研究。

1.15 应用编程接口

使用TCP/IP协议的应用程序通常采用两种应用编程接口(API):socket和TLI(运输层接口:Transport Layer Interface)。前者有时称作“Berkeley socket”,表明它是从伯克利版发展而来的。后者起初是由AT&T开发的,有时称作XTI(X/Open运输层接口),以承认X/Open这个自己定义标准的国际计算机生产商所做的工作。XTI实际上是TLI的一个超集。

第1章 概 述13

图1-11 本书中所有例子运行的测试网络,所有的IP地址均从140.252开始编址

在这个图中(作者的子网),大多数的例子都运行在下面四个系统中。图中所有的IP地址属于B类地址,网络号为140.252。所有的主机名属于.tuc.noao.edu这个域(noao代表National Optical Astronomy Observatories,tuc代表Tu cson)。例如,右下方的系统有一个完整的名字:svr4.tuc.noao.edu,其IP地址是:140.252.13.34。每个方框上方的名称是该主机运行的操作系统。这一组系统和网络上的主机及路由器运行于不同的TCP/IP实现。

需要指出的是,noao.edu这个域中的网络和主机要比图1-11中的多得多。这里列出来的只是本书中将要用到的系统。

在3.4节中,我们将描述这个网络所用到的子网形式。在4.6节中将介绍sunnetb之间的拨号SLIP的有关细节。2.4节将详细讨论SLIP。

1.17 小结

本章快速地浏览了TCP/IP协议族,介绍了在后面的章节中将要详细讨论的许多术语和协议。

14TCP/IP详解,卷1:协议

TCP/IP协议族分为四层:链路层、网络层、运输层和应用层,每一层各有不同的责任。在TCP/IP中,网络层和运输层之间的区别是最为关键的:网络层(IP)提供点到点的服务,而运输层(TCP和UDP)提供端到端的服务。

一个互联网是网络的网络。构造互联网的共同基石是路由器,它们在IP层把网络连在一起。第一个字母大写的Internet是指分布在世界各地的大型互联网,其中包括1万多个网络和超过100万台主机。

在一个互联网上,每个接口都用IP地址来标识,尽管用户习惯使用主机名而不是IP地址。域名系统为主机名和IP地址之间提供动态的映射。端口号用来标识互相通信的应用程序。服务器使用知名端口号,而客户使用临时设定的端口号。

习题

  1. 请计算最多有多少个A类、B类和C类网络号。
  2. 用匿名FTP(见27.3节)从主机nic.merit.edu上获取文件nsfnet/statistics/history.netcount。该文件包含在NSFNET网络上登记的国内和国外的网络数。画一坐标系,横坐标代表年,纵坐标代表网络总数的对数值。纵坐标的最大值是习题1.1的结果。如果数据显示一个明显的趋势,请估计按照当前的编址体制推算,何时会用完所有的网络地址(3.10节讨论解决该难题的建议)。
  3. 获取一份主机需求RFC拷贝[Braden 1989a],阅读有关应用于TCP/IP协议族每一层的稳健性原则。这个原则的参考对象是什么?
  4. 获取一份最新的赋值RFC拷贝。“quote of the day”协议的有名端口号是什么?哪个RFC对该协议进行了定义?
  5. 如果你有一个接入TCP/IP互联网的主机帐号,它的主IP地址是多少?这台主机是否接入了Internet?它是多接口主机吗?
  6. 获取一份RFC 1000的拷贝,了解RFC这个术语从何而来。
  7. 与Internet协会联系,isoc@isoc.org或者+1703 648 9888,了解有关加入的情况。
  8. 用匿名FTP从主机is.internic.net处获取文件about-internic/information-about-the-internic
上一篇:没有了 下一篇:第2章 链路层